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SUMMARY

Recent advances in medical image segmentation, grid generation, �ow solvers, realistic boundary con-
ditions, �uid–structure interaction, data reduction and visualization arc reviewed with special emphasis
on patient-speci�c �ow prediction. At the same time, present shortcomings in each one of these areas
are identi�ed. Several examples are given that show that this methodology is maturing rapidly, and may
soon �nd widespread use in medicine. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The vascular system (arteries and veins) delivers nutrients and retrieves waste products.
The respiratory system delivers oxygen and retrieves carbon dyoxide. These vital transport
systems are mainly tubular in nature, and are powered by the heart and lung, respectively.
Any kind of damage or obstruction of these transport systems will, in all likelihood, result
in a variety of diseases than can have a profound e�ect on wellness and quality of life.
Vessel damage or obstruction may be treated by a variety of surgical and interventional
procedures: stenting, balloon angioplasty, in situ drug delivery for unclotting, bypass surgery,
arti�cial organ implantation, etc. Many of these procedures are performed daily on thousands
of patients, and have led to an impressive empirical knowledge database. Some of these
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procedures have statistically signi�cant failure rates, indicating a need to study in depth the
�uid dynamics before and after the intervention. As in the manufacturing industries, it would
be highly desirable to predict the outcome of an intervention before ‘cutting tissue’, particularly
for complex cases where a detailed empirical database is lacking.
The basic steps required for any type of �ow simulation are the following:

• Pre-processing or problem de�nition:
◦ Geometry (surface);
◦ Boundary and initial conditions;

• Grid generation;
• Fluid–structure solver and
• Visualization and data deduction.

Any type of interventional simulation will require accurate modelling of patient-speci�c
anatomy and physiologic conditions. It is here where the biggest obstacle to routine sim-
ulations lies. Typically, only the anatomy is imaged. Flows may be measured non-invasively
by phase-contrast magnetic resonance (PCMR) or Doppler ultrasound (US). However, the
accuracy for these measurements can be problematic due to imaging artifacts and noise. The
compliance of an arterial wall is di�cult to obtain, and its pressure/diameter relation may be
highly non-linear. Nevertheless, recent advances in:

• Radiology (high contrast imaging);
• Image-to-surface de�nition tools;
• Automatic grid generation;
• Fast incompressible �ow solvers and realistic boundary conditions;
• Fluid–structure interaction techniques;
• Insightful visualization;
• Validation in the form of in vitro=vivo studies; and
• Increased compute and graphics power.

have led to a favourable con�uence of techniques that have made predictions on the living
human being possible, and in some cases, routinely so.
In the sequel, we focus on recent advances, outstanding issues and obstacles for each one

of these areas. Thereafter, we show several examples to demonstrate that what was a vision
several years ago is maturing rapidly and may indeed lead to clinical tools in the near future.

2. IMAGE-TO-SURFACE DEFINITION TOOLS

The starting point for most non-invasive patient-speci�c simulations is an image, i.e. an array
of pixels with di�erent colours. Imaging modalities currently in use are: digital subtraction
angiography (DSA), magnetic resonance angiography (MRA), computed tomography (CT),
and xenon-CT (XeCT). The overall quality (sharpness) of medical images depends not only
on hardware factors (resolution, wavelength, etc.), but also on type of contrast agent used, the
skill of the radiologist and patient-speci�c factors. This implies that in many cases, medical
images will exhibit coarse resolution and noise, i.e. require considerable experience and/or
‘guessing’ to be interpreted correctly. In order to conduct any kind of �ow simulation for the
some or all of the vessels present in the imaged region, the surface of these vessels needs to
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be extracted. Numerous techniques have been explored over the last decade, of which we list
a few here:
Active contours: This most common approach consists in 2D image segmentation based

on edge detection, followed by slice interpolation, stacking and meshing [1–4]. Although
there are many contour and edge detection operators, there is still no algorithm that can
automatically extract region boundaries perfectly from medical images [5]. Besides, this tech-
nique requires a large amount of manual input, and does not work properly for situations
where the vessel is not perpendicular to the image slices (e.g. complex bifurcations and
aneurysms).
Deformable models: In this case, an initial, given shape is iteratively deformed by solving an

equivalent elastic problem driven by the image intensity gradient [6–8]. The major drawback is
that the initial shape (or skeleton) must have the same topology as the reconstructed boundary.
For simple vessels and bifurcations this is perhaps the best technique available. However,
patient-speci�c simulations with complex geometries are di�cult, and in many instances this
technique requires substantial human intervention, making the whole process tedious and time
consuming.
Skeletonization and deformable models: These techniques assume that the surfaces to be

extracted are of tubular nature, i.e. have a skeleton of centrelines [9, 10]. In a �rst step, these
centrelines are extracted from the image. In a second step, the thickness of the vessels is
obtained by ‘in�ating’ the centrelines in order to match the vessel boundaries. In some cases,
each individual vessel is obtained separately, so that the complete vessel tree is obtained in
a third step that joins the separate branches. The end result is a triangulation that de�nes the
vessel geometry. The amount of manual ‘guidance’ varies from technique to technique, but can
be considerable for some. This type of technique works very well for tubular structures, i.e.
for most of the vascular system. However, it will not work well for regions where centrelines
are not well de�ned, such are highly stenosed vessels or aneurysms.
Region growing with isosurface extraction: These techniques interpret the pixels of the im-

age as a mesh, i.e. with an undelying point and element structure. Given the local distribution
of pixel intensity, an iso-surface of constant value can be obtained. The regions covered by
the vessels of interest are obtained using region growing algorithms [11–19]. Starting from
one or more the so-called seedpoints, all the voxels falling into the region of interest (typi-
cally given by an intensity threshold) are queried for a given intensity value. The iso-surface
obtained in this way is given as a triangulation.
None of the techniques outlined above is, at this point, universally applicable. In particular,

images that exhibit vessels in close proximity can lead to wrong vessel interpretation. The
automatic reconstruction of arterial trees involving several arterial generations also constitutes
an unsolved problem. Perhaps a combination of di�erent techniques for di�erent entities (e.g.
vessels, aneurysms, etc.) will lead to new breakthroughs.
The triangulation extracted from the medical image at hand, no matter which technique is

being used, must be post-processed further. We mention:
(a) Surface improvement: Depending on the vessel surface extraction technique used the

triangulations obtained can contain:

• Elements that have extremely large or small angles;
• Small elements surrounded by much larger elements and
• Elements with large normal jumps between neighbours.
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These elements are removed using edge or element collapse, as well as diagonal swapping
[15–21].
(b) Surface smoothing: Depending on the vessel surface extraction technique used and

the image resolution, the triangulations obtained will exhibit bumps, sharp corners or other
anormalities that are not present in the actual vessel. This implies that a surface smoothing
step is required. A number of surface smoothing techniques have appeared in the literature.
We have used the non-shrinking smoothing of Taubin [22].
(c) Branch cutting: Vessels tend to become smaller and smaller as one progresses along

the arterial tree. At some point, geometry resolution or �ux resolution is insu�cient, and a
boundary condition has to be applied to limit the computational domain. This implies that a
branch cutting tool has to be devised. Many techniques arc possible. We have used iso-distance
contours to cut branches interactively [15–19].
(d) Construction of post-operational models: Given the pre-operational anatomy, and the

expected modi�cation (e.g. due to stenting or bypass surgery), the post-operational model
can be constructed. This will involve surface merging, cutting, blending, etc. We have used
iso-surface-based techniques to perform such operations in an expedient way [23, 24].

3. AUTOMATIC GRID GENERATION

Any �eld solver requires some form of volume discretization. Given their high degree of
�exibility and automation, unstructured grids based on tetrahedra have been almost universally
adopted for patient-speci�c vessel simulations. Recent advances in:

• Discrete surface gridding and
• Minimal input grid generation

have enabled fully automatic grid generation of highly complex arterial and bronchial
geometries [17–19]. We mention a few of these advances in the sequel, as well as outstanding
issues for further investigation.
(a) Discrete surface gridding: The vessel geometry is not de�ned as an analytical sur-

face patch, but as a triangulation. This implies that robust automatic surface triangulation
techniques that operate on discrete surface patches have to be devised. For a number of
years, we have used an advancing front technique on these discrete surface patches [25, 26].
Recent improvements include: automatic preprocessing/improvement of the given discrete sur-
face patch grid, the de�nition and enforcement of the so-called sharp edges, a strict enforce-
ment of continuous topology, and improved front-crossing checks [27, 28].
(b) Minimal input grid generation: The de�nition of proper element size and shape for

arterial or bronchial trees with several branching generations can be a tedious, time-consuming
process. In order to alleviate this problem, we have used adaptive background grids based on
the local discrete surface patch curvature [27, 28]. This leads to grids where the number of
elements per vessel diameter is always su�cient, without generating too many elements in
the larger vessels.
As an outstanding research topic we mention the automatic generation of optimal grids for

tubular structures. The idea here is to generate stretched elements along the main direction
of a vessel. This technique could potentially reduce the number of elements and CPU time
requirements by a factor of 1:5.
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4. FAST INCOMPRESSIBLE FLOW SOLVERS

The equations describing incompressible �ows may be written as

v; t + v∇v+∇p=∇�∇v (1)

∇ · v=0 (2)

Here p denotes the pressure, v the velocity vector and both the pressure p and the viscosity �
have been normalized by the (constant) density �. Blood is a non-Newtonian �uid, implying
that the viscosity � depends on the strain rate tensor. The last two decades have seen impres-
sive progress in our ability to solve these equations in an expedient manner. Key elements of
any modern incompressible �ow solver include:

• An arbitrary Lagrangean–Eulerian (ALE) formulation for moving walls (deforming
grids);

• Implicit timestepping;
• Some form of upwinding with limiters for the advection operator;
• Satisfaction of the LBB condition for the divergence constraint, either via mixed elements
[29, 30], arti�cial dissipation [31–33] or consistent numerical �uxes [34],

• Preconditioned iterative solvers [35–38] for all large systems of equations that require
inversion;

• Edge-based data structures for reduced indirect addressing and optimal operation count
[39, 28]; and

• Minimal cache misses, vectorization and parallelization options [40].

Further algorithmic gains may come from the use of LU-SGS preconditioning [41, 42] and
multigrid [43, 44]. We have not seen the use of these techniques for medical �ow applications,
but see no reason why the success they have had in other �elds can not be duplicated here
as well.
Boundary conditions: The imposition of proper �ow boundary conditions represents one

of the most di�cult, and admittedly questionable, aspects of patient-speci�c simulations. In
the �rst place, the �ux data is not easy to obtain. Measuring velocity pro�les via phase-
contrast MR (PCMR) requires non-standard imaging protocols and a longer scanning time.
Then there is the question of resolution. The number of pixels required for accurate vessel
geometry reconstruction is much lower than the number of pixels required for accurate �ow
pro�le reconstruction. Only the velocity normal to the MR cut is measured, i.e. a complete
characterization of the velocity �eld would require even longer scanning times. For this reason
only the velocity normal to a cut is measured, i.e. all cross-velocity information is lost. For
some vessels, peak velocities can be measured using ultrasound techniques, and these can in
turn be used to impose boundary conditions. On the other hand, we know that the �ow in
curved tubular structures can exhibit considerable cross �ow, and that any form of cross �ow
can have signi�cant e�ects downstream.
To date, most CFD simulations have been carried out prescribing fully developed, time-

dependent velocity pro�les derived from �ow-rate curves using the Womersley solution [45].
The Womersley solution holds only for pulsating �ow in an in�nitely long circular cylinder.
For other vessel cross-sections the Womersley pro�les are mapped accordingly.
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Pressure boundary conditions are important for �uid–structure interactions simulations with
compliant walls. Pressures can be obtained invasively using catheters, but it would be highly
desirable to develop non-invasive pressure measuring techniques.
Major outstanding problems in this �eld are:

(a) The derivation of post-operative boundary conditions from pre-operative data
[55, 23, 24]; and

(b) The derivation of boundary conditions when complete information is unavailable. A
typical case is the Circle of Willis. We do not expect to be able to obtain complete �ow
and pressure data for this complex arterial system for years to come. Examples of work
in this area include vascular bed models [17–19] and the link of detailed 3D models
with 1D models of the whole cardiovascular system [2].

5. STRUCTURAL DEFORMATION MODELS

Arterial wall movement may have a profound e�ect on local �ow conditions. One ob-
serves that �uxes do not ‘add up’ if the deformation of the wall is neglected. In princi-
ple, the vessel wall and the surrounding medium can be modelled using a structural dy-
namics solver for 3D non-linear, large-deformation behaviour. However, the di�culties in
obtaining proper initial and boundary conditions are even more pronounced here than for
the �ow solver. The material is highly non-linear, orthotropic, layered, may be responding,
etc. How to obtain this information non-invasively is, at this point, an open question. For
this reason, most wall deformations have been computed using shells [46, 47] or, even sim-
pler, an independent ring model [2]. In this case, the normal wall displacement � is obtained
from:

m�; tt + d�; t + k�=p; m=�wh; k=
Eh

(1− �2)r2 (3)

where �w; h; r; E; � denote, respectively, the wall density, thickness, vessel radius, Young’s
modulus and Poisson’s ratio. This equation is integrated using a second-order implicit time
integration scheme. As stated before, measuring h; r; E; � is no simple matter [47, 48].

6. FLUID–STRUCTURE INTERACTION TECHNIQUES

Given that vessel deformation plays an important role for local �ux evaluations, the �uid
and structure models must be combined. Due to their generality, modularity and extendability
the so-called loose coupling techniques have been used extensively in engineering (see, e.g.
[49]). The key idea is to have a master code that invokes the �uid and structural codes
alternatively in such a way that a minimum of changes are required for the latter. All data
transfer is handled by a separate library. We remark that this is not only a matter of fast
interpolation techniques [50, 51], but also of accuracy, load conservation [52, 53], geometrical
�delity [52, 53] and temporal synchronization [52–54]. For implicit CFD and CSD codes, we
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use the following underrelaxed predictor-corrector scheme for each timestep:

while: not converged:
update structure with fluid loads:

xis=(1− �)xi−1s + �f(�if)
update fluid with structure position/velocity:

�if=(1− �)�i−1f + �g(xis)
endwhile

Typical underrelaxation factors are in the range 0:56�60:9. Current research in this area is
focused on convergence criteria and acceleration techniques.

7. INSIGHTFUL VISUALIZATION

In order to enhance the understanding and prediction capability of patient-speci�c simulations,
the results obtained must be presented in a form easily accessible to the medical community.
In the particular case of tubular structures, many classic visualization techniques fail to o�er
insight. This is because iso-surfaces or plane cut, staples in the engineering world, become
meaningless. A plane cut through a twisted, winding arterial or bronchial tree will lead to
a few scattered ellipsoids here and there that o�er no insight on �uxes, pressures, etc. For
this reason, we have developed specialized reduction techniques [23, 24] that work with the
skeleton of the tubular structure in order to display:

• Plane cuts normal to the skeleton;
• Plane cuts along the skeleton;
• Fluxes along the skeleton;
• Iso-distance to wall surfaces, etc.

These reduction techniques have proven extremely bene�cial in identifying important �ow
features such as local recirculation zones and �ow rates. Other techniques that have found
widespread use in computational hemodynamics include particle tracking (where there is an
immediate mental connection to blood cells) and the use of transport equations to observe the
dispersion of tracers.

8. VALIDATION

In order to validate at least partially the methodology developed to date, a phantom glass
model of a cartid bifurcation with 65% stenosis in the internal carotid artery was measured
and computed. The model, as well as the cuts used for MRA �ow measurements are shown
in Figure 1(a). The CFD model was generated from the MRA data. The discrepancy in the
radii obtained from image processing and segmentation was less than 2%. Parabolic velocity
pro�les based on measured �uxes were prescribed at the entrance and exit of the external
carotid. Figure 1(b) shows a comparison of the absolute value of the velocities (CFD) and the
normal velocity measured (MRA) for the cuts labelled A–A, B–B, in Figure 1(a). One can
clearly see how coarse the resolution of the MRA is. Figure 1(c) shows the absolute value of
the velocity in the centreplane and the streamlines. Note the large recirculation zone present.
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Figure 1. (a) Phantom: MIP geometry de�nition and MRA cuts. (b) Phantom: comparison of velocities
(CFD-MRA). (c) Phantom: abs(Vel) in plane and streamlines.

9. EXAMPLES

E.1 Circle of Willis: The aim of this simulation was to assess the e�ect of clipping an
artery in the Circle of Willis on the overall �ow pattern. Figure 2(a) shows the graph-
ical interface used for image processing, segmentation, surface extraction and surface
improvement. One can clearly discern the maximum intensity projection (MIP) on the
upper left side, as well as two other cuts and the main 3D window with the extracted
and cut surface. The surface mesh is shown in Figure 2(b). The volume mesh had ap-
proximately 4 million tetrahedra. Figure 2(c) shows streamribbons for an unclipped (left)
and clipped (right) artery superposed on the volume rendered anatomy. These views show
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Figure 2. (a) Circle of Willis: Zhemo user interface. (b) Circle of Willis: surface mesh. (c) Circle of
Willis: Streamribbons for open and clipped cases.
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Figure 3. (a, b) Carotid bifurcation: MIP and comparison of �uxes.

how CFD can be used to complement current anatomy-based diagnostics for surgical
planning.
E.2 Carotid bifurcation: This case shows the need to couple �uid and structural codes

to predict arterial �ows. The anatomical data was taken from a normal human subject. A
model of the right carotid artery of the subject was reconstructed from contrast-enhanced
MRA images. Figure 3(a) shows the maximum intensity projection (MIP) of the anatomical
images. Four 2D phase-contrast MRA images were taken at di�erent locations, two along the
common carotid artery (CCA) below bifurcation, and two above the bifurcation. Figure 3(b)
shows the sum of the �ow to the internal (ICA) and external (ECA) carotid arteries, which
is markedly di�erent from the �ow at the CCA (labelled as rigid wall). Instantaneous �ows
between the two consecutive PC slices along the CCA are also di�erent. These changes in the
�ow waveforms are due to the compliance of the arterial walls, and cannot be neglected in
the �nite element modelling. It must be noted that although instantaneous �ows do not add up
to zero, the total �ows over a cardiac cycle do. The two �ow measurements along the CCA
were used to derive the pressure waveform using a lumped parameter model. A �uid–structure
interaction simulation was then carried out imposing Womersley velocity pro�les at the exits
from the ICA and ECA and traction-free boundary conditions at the entrance of the CCA with
the reconstructed pressure waveform. The computed �ow rate at the entrance of the CCA is
also shown in Figure 3(b). Although this compliant model does not perfectly reproduce the
measured �ow at that location, it certainly represents a much better approximation than a rigid
model.
E.3 Thorax: This last case is concerned with the air �ow in the bronchii and lungs. The

segmented image, together with the cuts at the extremities of the smaller branches, is shown
in Figure 4(a). The mesh sizes were automatically obtained from an adaptive background
grid with 6 levels of re�nement. This produced the surface mesh shown in Figure 4(b). One
can discern the smaller elements in regions of higher curvature and smaller vessel diameter.
The volume mesh had approximately 1 million elements. In this �rst study, only the steady
air�ow was considered. The results obtained can be seen in Figures 4(c) and 4(d) which
show surface pressures and iso-surfaces of constant absolute value of velocity.
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Figure 4. (a, b) Thorax: segmented image and surface mesh and (c, d) thorax: surface pressures
and iso-surfaces of abs(velocity).

10. CONCLUSIONS AND OUTLOOK

The ability to predict accurately �ows in the vascular and pulmonary system on a patient-
speci�c basis has increased dramatically in the last years. We expect progress to continue in
all the areas that encompass a comprehensive simulation capability: image segmentation, grid
generation, �ow solvers, �uid–structure interaction, data reduction and visualization. Some of
the outstanding questions involve boundary conditions, material parameters (in particular for
wall compliance), and the clinical signi�cance of particular �ow phenomena.
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At present, image-based, patient-speci�c computational hemodynamics can be used to

• Study vascular diseases;
• Enhance diagnosis; and
• Plan surgical procedures.

Imaging modalities will continue to evolve and eventually both anatomy and physiology will
be accurately visualized. However, the power of computer simulations lies in their ability to
predict the outcome of procedures, i.e. the answer to ‘what if’ questions that can be useful
for optimizing therapies. Looking into the more distance future, we foresee:

• CFD enhanced radiology;
• Simulations of long-terms e�ects, such as plaque formation;
• Simulations of drug delivery and e�ects; and
• The coupling of �ow codes (continuum level) and particle codes (molecular level).
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